Concepts and Implementation of the Philips Network-on-Chip
نویسندگان
چکیده
SoC communication infrastructures, such as the Æthereal network on chip (NoC), will play a central role in integrating IPs with diverse communication requirements. To achieve a compositional and predictable system design, it is essential to reduce uncertainties in the interconnect, such as throughput and latency. In our NoC, these uncertainties are eliminated by providing guaranteed throughput and latency services. Our NoC consists of routers and network interfaces. The routers provide reliable data transfer. The network interfaces implement, via connections, high-level services, such as transaction ordering, throughput and latency guarantees, and end-to-end flow control. The network interfaces also implement adapters to existing on-chip protocols, such as AXI, OCP and DTL, to seamlessly connect existing IP modules to the NoC. These services are implemented in hardware to achieve high speed, and low area. Our NoC provides run-time reconfiguration. We show that in the Æthereal NoC, this is achieved by using the NoC itself, instead of an additional control network. We present an instance of a 6-port router with an area of 0.175mm after layout, and a network interface with 4 IP ports having a synthesized area of 0.172mm. Both the router and the network interface are implemented in 0.13μm technology, and run at 500 MHz.
منابع مشابه
Reliability and Performance Evaluation of Fault-aware Routing Methods for Network-on-Chip Architectures (RESEARCH NOTE)
Nowadays, faults and failures are increasing especially in complex systems such as Network-on-Chip (NoC) based Systems-on-a-Chip due to the increasing susceptibility and decreasing feature sizes. On the other hand, fault-tolerant routing algorithms have an evident effect on tolerating permanent faults and improving the reliability of a Network-on-Chip based system. This paper presents reliabili...
متن کاملApplying KT Network Complexity to a Highly-Partnered Knowledge Transfer Effort; Comment on “Using Complexity and Network Concepts to Inform Healthcare Knowledge Translation”
The re-conceptualization of knowledge translation (KT) in Kitson and colleagues’ manuscript “Using Complexity and Network Concepts to Inform Healthcare Knowledge Translation” is an advancement in how one can incorporate implementation into the KT process. Kitson notes that “the challenge is to explain how it might help in the healthcare policy, practice, and research communities.” We propose th...
متن کاملUsing Complexity to Simplify Knowledge Translation; Comment on “Using Complexity and Network Concepts to Inform Healthcare Knowledge Translation”
Putting health theories, research and knowledge into practice is a challenge referred to as the knowledge-toaction gap. Knowledge translation (KT), and its related concepts of knowledge mobilization, implementation science and research impact, emerged to mitigate this gap. While the social interaction view of KT has gained currency, scholars have not easily made a link between KT and the concep...
متن کاملDesign of a Low-Latency Router Based on Virtual Output Queuing and Bypass Channels for Wireless Network-on-Chip
Wireless network-on-chip (WiNoC) is considered as a novel approach for designing future multi-core systems. In WiNoCs, wireless routers (WRs) utilize high-bandwidth wireless links to reduce the transmission delay between the long distance nodes. When the network traffic loads increase, a large number of packets will be sent into the wired and wireless links and can...
متن کاملCAFT: Cost-aware and Fault-tolerant routing algorithm in 2D mesh Network-on-Chip
By increasing, the complexity of chips and the need to integrating more components into a chip has made network –on- chip known as an important infrastructure for network communications on the system, and is a good alternative to traditional ways and using the bus. By increasing the density of chips, the possibility of failure in the chip network increases and providing correction and fault tol...
متن کاملCongestion estimation of router input ports in Network-on-Chip for efficient virtual allocation
Effective and congestion-aware routing is vital to the performance of network-on-chip. The efficient routing algorithm undoubtedly relies on the considered selection strategy. If the routing function returns a number of more than one permissible output ports, a selection function is exploited to choose the best output port to reduce packets latency. In this paper, we introduce a new selection s...
متن کامل